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Interaction of a relativistic soliton with a nonuniform plasma
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By using a relativistic fluid model, a nonlinear theory for the propagation of an intense laser pulse in an
inhomogeneous cold plasma is developed. Assuming that the radiation spot size is larger than the plasma
wavelength, we derive an envelope equation for the momentum of the electron fluid, taking into account
relativistic electron mass variation and finite amplitude electron density perturbations that are driven by the
relativistic ponderomotive force of light. Localized solutions of the envelope equation are discussed from an
energy integral containing an effective potential. Numerical results for envelope solitons are obtained in a
quasistationary approximation. The dependency of these localized solutions on the amplitude and the group
velocity of the laser pulse is discussed. Also derived is an equation that governs the dynamics of the pulse
center.
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I. INTRODUCTION

The interaction of relativistically intense short laser puls
with plasmas has been an area of vigorous research fo
past several years. For ultraviolet wavelengths, on the o
of 200–300 nm, the intensity region of interest in whi
relativistic effects become important lies abo
;1018 W/cm2. The propagation of radiation in such med
for intensities greater than;1016 W/cm2, naturally causes a
strong nonlinear ionization in all matters. Hence, the pu
itself, even in regions where the intensity is relatively lo
compared to the peak value, removes many electrons@1–3#
from the atomic or molecular constituents, creating a plas
column in which the main high-intensity component of t
pulse propagates. Therefore, in a reasonable first approx
tion, the investigation of the resulting propagation can
divided into two separate and distinct areas. These are~i! the
atomic and plasma physics occurring in the field of an
tense electromagnetic wave leading to ionization, and~ii ! the
subsequent nonlinear propagation of the radiation in
plasma that is generated. The work described below conc
the latter issue.

The interaction of ultra-high-power laser beams@4# with a
plasma is rich in describing a variety of nonlinear pheno
ena @5#. The latter become particularly interesting and
volved when the laser power is high enough to cause
electron oscillation~quiver! velocity to become highly rela
tivistic. Some of the interesting laser-plasma processes
are discussed include~a! relativistic optical guiding@6–9# of
the laser beam,~b! the excitation of coherent radiation a
harmonics of the fundamental laser frequency,~c! the gen-
eration of large amplitude plasma waves@10–12# ~wake
fields!, ~d! a frequency shift induced in the laser pulse
plasma waves@13#, ~e! frequency amplification using an ion
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ization front, and~f! single particle acceleration in a lase
pulse.

Among the other important phenomena in this area is
creation of solitons. It is known that a soliton moving in a
inhomogeneous plasma will be accelerated~decelerated!
@14–17#. In a nonrelativistic one-dimensional treatment,
has been shown that a Langmuir soliton when accelera
can, like a particle, emit ion-sound waves. An appropri
approach for the investigation of such a problem can
found in Ref.@18#. When the energy of the electrons in th
laser field becomes comparable to, or exceeds, the elec
rest mass energy, the dependency of the electron mass o
amplitude of the pumping wave becomes important@19#.
This leads to considerable changes in the dynamical pla
behavior.

In this paper we present a fully relativistic nonline
model that describes self-consistent interactions of an inte
laser pulse with a nonuniform cold plasma. Thermal effe
are neglected because the electron quiver velocity is m
larger than the electron thermal speed, and the thermal
ergy spread is sufficiently small such that the electron tr
ping in the plasma wave is avoided. Also, the ions are
sumed to be stationary. The radiation spot size is larger t
the plasma wavelength, i.e.r 0@lp52p/kp , wherer 0 and
lp denotes the radiation spot size and the plasma wa
length, respectively. According to this approximation, t
variation of the spot size is negligible over integration spa
In order to continue with analytical calculations, a smoo
plasma inhomogeneity is assumed, and therefore a weak
celeration for the pulse is expected. In this case, the co
tion for a quasistationary approximation is fulfilled. Th
means, in a frame moving at the speed of the center of
laser pulse, the plasma fluid experiences a nearly steady
radiation field. An analysis of the wave equation leads
explicit formulas that are numerically evaluated for exam
ing the effects of the relativistic light ponderomotive forc
and relativistic electron mass variation in the laser fiel
©2002 The American Physical Society06-1
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Specifically, we derive an envelope equation for the mom
tum of the electrons, and discuss localized solutions of
equation by expressing it in the form of an energy integ
with an effective potential. It is further shown that fini
amplitude localized light pulses suffer acceleration wh
they propagate through an inhomogeneous plasma.

The manuscript is organized in the following fashion.
Sec. II we present basic equations and deduce an enve
equation for the nonlinear laser pulse propagation in an
homogeneous plasma. The equation for the envelope pul
further developed in Sec. III to include finite electron dens
perturbations that are created by a relativistic ponderomo
force of intense laser light. Localized solutions for envelo
light pulses are obtained in Sec. IV. Section V deals with
acceleration of solitary light pulses in a nonuniform plasm
Section VI contains a summary of our investigation.

II. BASIC EQUATION

We investigate the propagation of high-frequency circ
larly polarized electromagnetic waves in a plasma by us
the Maxwell equations and relativistic fluid equations for t
electrons. In the field of short laser pulses, the ions do
respond and they form only the neutralizing background.
consider the case in which the frequencyv0 of the laser
pulse is much larger than the electron plasma frequency,vp ,
and decompose all the physical quantities into short and l
timescale components, i.e., we express

a5^a&1ã, ~1!

where the angular bracket denotes an averaging over a
periodt52p/v0. The time-averaged quantities are expec
to vary over much longer time scales. The equations gov
ing the fast time varying~short time scale! quantities are@20#

¹2p̃t2
]2p̃t

]t2
5

^n&

^g&
p̃t , ~2!

B̃5¹3p̃t , ~3!

and

]p̃t

]t
52Ẽ, ~4!

wherep̃t is the transversal part of the electron momentumB̃
andẼ are the laser magnetic and electric fields, respectiv
^n& is the average plasma number density, and the relativ
gamma factor is denoted byg. Furthermore, in Eqs.~2!–~4!
the momentum is normalized bymc, the density by the equi
librium valuen0, the electric and magnetic fields are in un
of mcvp /e, and the space and time are normalized byc/vp

andvp
21 , respectively. Here,m is the rest mass of the elec

trons, c is the speed of light in vacuum,vp
5(4pn0e2/m)1/2 is the electron plasma frequency, ande is
the magnitude of the electron charge. The circularly po
ized electromagnetic waves are represented as
06640
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p̃t5
1

A2
~ex1 iey!p~r' ,z,t !ei (k0z2v0t)

1complex conjugate,

whereex andey are the unit vectors in thex andy directions,
and k0 is the laser pulse wave number. ForDr'@Dz the
amplitude of the pulse in the perpendicular direction chan
much smoothly than in thez direction. Therefore, the diffrac
tion of the pulse is negligible, which, in turn, means that t
transverse spreading time,td5pr 0

2/(l0c), is longer than the
plasma period,te52p/vp . This condition is satisfied for
r 0@lp . Then,p̃t can be rewritten as

p̃t5
1

A2
~ex1 iey!e2r'

2 /2r 0
2
p~z,t !ei (k0z2v0t)

1complex conjugate, ~5!

which dictates that we are assuming a Gaussian profile in
transverse direction of the pulse propagation. Substituting
p̃t from Eq. ~5! into Eq. ~2!, multiplying the resultant equa
tion by exp(2r'

2/2r 0
2)2pr'dr' , and integrating overr' we

finally obtain

2iv0S ]p'

]t
1

k0

v0

]p'

]z D1S ]2p'

]t2
2

]2p'

]z2 D
5F ~11Dn!

1

pr 0
2E0

`e2r'
2 /r 0

2

^g&
2pr'dr'

1
1

pr 0
2E0

`

e2r'
2 /r 0

2 dn

^g&
2pr'dr'21Gp' , ~6!

where the average electron number density is of the form

^n&511Dn~z!1dn. ~7!

HereDn(z) is the inhomogeneity profile in the medium an
dn is the density variation from the equilibrium value
Throughout this paper we maintain the conditionDn!1
~small inhomogeneity limit!. It is convenient to transform
from laboratory variables (z,t) to new variables (j,t), where
j5z2vgt, t5t and vg5k0 /v0. Using these variables we
can transform Eq.~6! into the form

2iv0

]p'

]t
1

1

gg
2

]2p'

]j2
12vg

]2p'

]j]t
5~vNL

2 21!p' , ~8!

wheregg51/A12vg
2 andvNL

2 contains the two integrals in
the right-hand side of Eq.~6!. As was mentioned before, w
consider a very short laser pulse.1 That means we expect tha
during a transit time of the plasma through the laser pu

1The criteria for this claim will be given when the width of th
solution is defined.
6-2



m
na
he
in

t
a

r
io

e
,

is

or

a
ive

INTERACTION OF A RELATIVISTIC SOLITON WITH . . . PHYSICAL REVIEW E65 066406
the plasma changes very little. Moreover, a smooth plas
inhomogeneity is assumed and, therefore, a quasistatio
approximation would yield appropriate solutions for t
pulse region. To solve Eq.~8! we use standard methods
which p' is expressed in the formp'5a(j,t)exp@ic(j,t)#.
Accordingly, using]a/]j@]a/]t and ]c/]j@]c/]t, we
obtain after some straightforward algebra

v0

]a2

]t
1

1

gg
2

]

]j S a2
]c

]j D50, ~9!

and

1

gg
2

]2a

]j2
2F2v0

]c

]t
1

1

gg
2 S ]c

]j D 2Ga5~vNL
2 21!a. ~10!

Solutions for Eqs.~9! and ~10! can be sought in the form
a(j2 j̄) and c(j,t), where j̄(t) is the coordinate of the
pulse center. The time evolution ofc is determined in the
following way. Since the amplitude is assumed to have
functional dependency only on the self-similar argumenh
5j2 j̄(t), and also retaining only solutions that vanish
infinity, i.e. the localized solution (h→6`, a→0), we con-
clude from Eq.~9! that @18#

c~j,t !5gg
2v0j̄~ t !j1F~ t !, ~11!

whereF(t) is a function of time that can be considered a
bitrary, but it will be specified later according to the behav
of a at its maximum.

III. EQUATION OF PULSE ENVELOPE

The low-frequency modulation of the pulse amplitud
which is a result of the nonlinear response of the plasma
described throughvNL

2 in Eq. ~10!. To determinevNL
2 , we
06640
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need to knowdn in the quasistationary approximation. Th
can be done by using the equations for slowly varying~long
time scale! variables@20#

]^p&
]t

5^E&2¹^g&, ~12!

and

¹•^E&5^n&21. ~13!

From Eqs.~12! and~13! we easily deduce the expression f
the density variation in a quasistationary approximation~see
the Appendix!. We have

dn5
]2^g&

]j2
. ~14!

Substituting Eq. ~14! into Eq. ~10!, using ^g&
5A11exp@(2r'

2/r0
2)a2#, and performing the integrals invNL

2

with respect tor' , we obtain

F2vg
21

ln g2

g221
G]2a

]j2
1

1

a S 1

g2
2

ln g2

g221
D S ]a

]j D 2

2F2v0Ḟ1v0
2gg

2j̇̄2

12v0
2gg

2jj̈̄1
2

g11
~11Dn!21Ga

50, ~15!

whereg5A11a2. Integrating Eq.~15! once and assuming
localized solitary pulse whose amplitude and its derivat
tend to zero asymptotically, we have
F ln g2

g221
2vg

2G S ]a

]j D 2

2F2v0Ḟ1v0
2gg

2j̇̄212v0
2gg

2jj̈̄1
4~11Dn!

g221
S g212 ln

11g

2 D21Ga2

1E
2`

j

dj8F2v0
2gg

2j̈̄14
dDn

dj8

1

g221
S g212 ln

11g

2 D Ga250. ~16!

If we assume that the maximum value of the amplitude,a5am , corresponds to the pointj5 j̄ where (]a/]j)j5 j̄50, then
from Eq. ~16! we obtain the unknown functionF(t),

2v0Ḟ1v0
2gg

2j̄212v0
2gg

2j̈̄ j̄512
4~11Dn̄!

gm
2 21

S gm212 ln
11gm

2 D
1

1

am
2 E

2`

j̄
dj8F2v0

2gg
2j̄14

dDn

dj8

1

g221
S g212 ln

11g

2 D Ga2, ~17!

wheregm5A11am
2 andDn̄ is the value ofDn at j5 j̄. If we replaceF(t) in Eq. ~16! we finally obtain an equation for the

pulse envelope as
6-3
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F ln g2

g221
2vg

2G S ]a

]j D 2

2F2v0
2gg

2~j2 j̄ ! j̈̄2
4~11Dn̄!

gm
2 21

S gm212 ln
11gm

2 D1
4~11Dn!

g221
S g212 ln

11g

2 D Ga2

2
a2

am
2 E

2`

j̄
dj8F2v0

2gg
2j̈̄14

dDn

dj8

1

g221
S g212 ln

11g

2 D Ga21E
2`

j

dj8F2v0
2gg

2j̈̄14
dDn

dj8

1

g221
S g212 ln

11g

2 D Ga2

50. ~18!
th
ry

y,
e
-

f

d

on

e

-
-
its
se-
ior
h.

ro.

its
-
hat

s-
IV. SOLUTION OF THE PULSE ENVELOPE

In this section we present solutions of Eqs.~15! and~18!.
Since a weak plasma inhomogeneity is assumed (Dn!1), a
change in the position of the pulse center as a result of
interaction of the pulse with the inhomogeneity will be ve
small. Therefore, in Eq.~18!, to a good approximation, we
can neglect all terms that are proportional to (j2 j̄) or Dn,
i.e. (j2 j̄)!1 andDn!1. Furthermore, the inhomogeneit
Dn, is assumed to change very smoothly and its derivativ
also small. Hence, Eqs.~15! and ~18! take the form, respec
tively,

F ln g2

g221
2vg

2G]2a

]j2
1

1

a S 1

g2
2

ln g2

g221
D S ]a

]j D 2

2
4a

am
2

3S gm212 ln
11gm

2 D1
2a

g11
2a50, ~19!

and

F ln g2

g221
2vg

2G S ]a

]j D 2

1
4a2

am
2 Fgm212 ln

11gm

2 G
24Fg212 ln

11g

2 G50. ~20!

Equation~20! is similar in form to the Hamilton equation o
a single particle with the coordinate ‘‘a’’ and time ‘‘j.’’ Thus,
the energy integral is written as

1

2 S ]a

]j D 2

1V~a!50, ~21!

where the effective potential is

V~a!5
2

F ln g2

g221
2vg

2G F a2

am
2 S gm212 ln

11gm

2 D

2S g212 ln
11g

2 D G . ~22!

We see from Eq.~22! that the denominator ofV(a) at a
critical amplitudeac becomes zero, and this value depen
on vg , i.e.,
06640
e

is

s

ln~11ac
2!

ac
2

5vg
2 . ~23!

Figure 1 depicts the effective potential for the caseam,ac
whenvg50.78 and the maximum soliton amplitudeam.1.
As is evident from the figure, the critical amplitudeac is
larger thanam . Therefore, the assumed physical conditi
@(da/dj)→0 whena→am] is fulfilled. A localized solution
of Eqs.~21! and~22! is shown in Fig. 2. The behavior of th
effective potential in terms of the variation ofam is shown in
Fig. 3 whenvg50.78. In this figure, the depth of the effec
tive potential increases asam increases. Therefore, it is ex
pected that the descent of the soliton amplitude from
maxima to its minima takes place more steeply and con
quently a shorter soliton results. The details of this behav
will be discussed later when we describe the soliton widt

Figure 4 shows the effective potential whenvg50.8 and
am51.2. Here the critical amplitude (ac51.15) is less than
am at which da/dj has already been assumed to be ze
According to the potential shape~Fig. 4! we can deduce
da/dj, except at infinity, which never vanishes, and
maximum~that isac) is at infinite. This behavior is in con
tradiction with the essential assumption of the problem t
(da/dj)→0 when a→am . Therefore, in the caseam.ac
the pointa5am is forbidden. The existence of such a di
continuity inda/dj even removes the pointam5ac from the

FIG. 1. The effective potential foram,ac andvg50.78.
6-4
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region of valid solutions. Hence, only valid localized sol
tions are situated in the region wheream,ac . The critical
amplitude,ac , is related to the group velocity,vg , through
Eq. ~23!. In other words, the valid region of the solutions,

FIG. 2. The three envelope solution of the high-frequency m
mentum amplitude according to the effective potential shown
Figs. 1 and 3 (vg50.78). The smaller the soliton amplitudes th
larger the width will be.
am
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y
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06640
each case, is determined through the group velocity of
laser pulse.

We now discuss the width of the soliton. At this stage,
introduce the criteria by which a short laser pulse is defin
Let us introduce the width of the solution,D, through Eq.
~19!, as follows:

-
n

FIG. 3. The 3D effective potential for the caseam,ac and vg

50.78. The smaller the soliton amplitudes are, the shallower
potential is. This figure shows the inverse relation of the width a
the maximum soliton amplitude.
D5E
am

am /e5 S g212 ln
11g

2 D2
a2

am
2 S gm212 ln

11gm

2 D
S ln g2

g221
2vg

2D 6
21/2

da. ~24!
nu-
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v-
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The validity of the 1D model requires that the laser be
diffraction time~transverse spreading time!, td5pr 0

2/(l0c),
is longer than the characteristic time of the pulse propa
tion, i.e., tp5D/(vpvg). Hence, the criterion for the puls
spot size is

r 0
2@

cD

v0vp
.

For a plasma withne51012 cm23, we havevp;1010 s21

(vp55.643104ne
1/2 rad s21). For a typical laser frequenc

of the order of;1015 s21, the pulse spot size should satis

r 0
2@10217D

which, according to the width shown in Figs. 5 and 6,
easily fulfilled for the usual laboratory data of the spot si

From Fig. 2 it is qualitatively clear that the width of th
soliton decreases asam increases. This figure exhibits sol
tons with vg50.78 for three different values ofam ~50.6,
0.9,1.2!. The description of the width behavior is analytical
a-

.

impossible. Therefore, to compute the width,D, a fourth
order Runge-Kutta method is used. Note that from the
merical point of view Eq.~20! is not convenient for our
purposes. If one begins the integration from a pointa05am
then after integration over a step size we will havea15a0,
i.e., a0 is an equilibrium point. So the starting point shou
bea8(uam2a8u<e, wheree is the smallest machine numbe
But the sensitivity of the solution to the value ofe forces us
to use the second order form of the differential equation.
the latter, the starting points chosen area5am and da/dj
520.000 0001; the latter is our approximation for zero. T
result is displayed in Fig. 5 for different values ofvg ~50.78,
0.82,0.87,0.92!. This figure represents two essential beha
iors of the width. First, the larger the soliton amplitude t
shorter is the soliton width and visa versa~in the linear
theory,D is infinite!. Second, for largervg the soliton width
is smaller. The analytical solution in the nonrelativistic lim
is

a5
am

cosh~ggj/d!
, ~25!
6-5
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whered52A2/am . In Fig. 6 the numerical solution, includ
ing the relativistic effect~for am50.6 andvg50.92) is com-
pared with the case where it is neglected@Eq. ~25!#. It is clear
that in the relativistic case a shorter width for the soliton
obtained. In Fig. 7 the soliton solutions foram50.6 andvg
5(0.78,0.82,0.87,0.92) are shown. From Fig. 7 the inve
relation ofD with respect tovg is significant.

V. ACCELERATION PROCESS

The interaction of a localized laser pulse with the inh
mogeneity can accelerate the pulse. This effect is obta
from Eq. ~18!. Let the variablej approach infinity. Then all
terms are zero except the integral term which gives the r
tion between the acceleration and the density inhomogen
i.e.,

FIG. 4. The effective potential for the caseam.ac and vg

50.8 and its asymptotic behavior nearac .

FIG. 5. The width of the envelope solutions for different valu
of vg(50.78,0.82,0.87,0.92!. The larger thevg the smaller will be
the width.
06640
e
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j̈̄E
2`

1`

dj8a252
2

v0
2gg

2E
2`

1`

dj8
dDn

dj8
F g212 ln

g11

2 G .
~26!

ExpandingDn aroundj̄ we can rewrite Eq.~26! in a more
convenient form as

j̈̄52
2

v0
2gg

2

dDn̄

dj̄

E
2`

1`

dj8Fg212 ln
g11

2 G
E

2`

1`

dj8a2

. ~27!

Equation~27! is similar to the equation of motion for a singl
particle under the influence of a force

FIG. 6. Comparison of relativistic and nonrelativistic solito
for the casesam50.6 andvg50.92.

FIG. 7. The envelope solutions of the high-frequency mom
tum amplitude. This figure is in agreement with Fig. 5.
6-6
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F~ t,j̄,am ,vg!52
2

v0
2
a~am ,vg!

dDn̄

dj̄
, ~28!

which generally depends on the maximum amplitude of
envelope and the group velocity of the pulse. Figure 8 sho
the variation ofa with respect toam for different values of
vg . The difference in the curves is due tovg . That means
when vg increases, the acceleration decreases. Figur
shows the variation ofa with am . By increasingam , a
decreases very slowly.

We note that due to the transformation of the variab
from the laboratory frame (z,t) to (j,t), the densityDn(z)
is transformed toDn(j1vgt). First, we consider the linea

case in whichDn5z. Here we havej̈̄52a/(2v0
2) whose

solution isj̄52a/(4v0
2)t21c1t1c2. Second, we consider

FIG. 8. Variation ofa against different values ofvg .

FIG. 9. The coefficienta for vg50.87. A negligible dependenc
of a on am is evident.
06640
e
s

9

s

parabolic profile forDn5z2/2. In this case, we havej̈̄
52a/(2v0

2)( j̄1vgt), the solution of which is j̄
5c1 cos$@Aa/(2v0

2)#t1c2%2vgt. Clearly, in the laboratory
frame, we observe an oscillatory behavior for the center
the pulse.

VI. SUMMARY AND CONCLUSION

In this paper we have considered the nonlinear propa
tion of an intense laser pulse in a nonuniform cold plasm
By using a fully relativistic fluid model and Maxwell
Poisson system of equations, we have derived an enve
equation for intense laser pulses, taking into account rela
istic electron mass variation and the electron density per
bations that are created by a relativistic light ponderomot
force. An equation for the dynamics of the pulse center
also obtained. It is found that the envelope equation can
cast in the form of an energy integral with an effective p
tential. The numerical analysis of the energy integral reve
the existence of a finite amplitude localized light puls
whose maximum amplitude is restricted by the group vel
ity of the localized pulse. It is found that the width of th
latter decreases with the increase of the group velocity
the maximum solitary pulse amplitude. Furthermore, a loc
ized solitary pulse suffers acceleration when it trav
through an inhomogeneous plasma. The soliton accelera
depends significantly onvg ~for a larger group velocity the
acceleration becomes smaller!, but its dependency on th
maximum amplitude is negligible. In conclusion, we stre
that the results of the present investigation should be us
in understanding the nonlinear propagation of localized
tense laser pulses in nonuniform plasmas such as thos
inertial confinement fusion and astrophysical environmen
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APPENDIX: A DERIVATION OF EQ. „14…

Here we derive Eq.~14! for the electron density perturba
tion in the presence of the ponderomotive force of inten
short laser pulses@20#. For this purpose, we use the long tim
scale part of the electron continuity equation

]dn

]t
1

]

]z

^n&^pz&
m^g&

50, ~A1!

and Poisson’s equation

]

]z
^Ez&524pedn. ~A2!
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Substitutingdn from Eq. ~A2! into Eq. ~A1! and integrating
once, we obtain

^pz&5
m^g&

4pe^n&

]

]t
^Ez&. ~A3!

Substituting for̂ pz& from Eq. ~A3! into the long time scale
part of the momentum equation

]

]t
^pz&52e^Ez&2mc2

]

]z
^g&, ~A4!

we have

]

]t S 1

vpNL

2

]

]t
e^Ez& D 52e^Ez&2mc2

]

]z
^g&, ~A5!
e

v.

ev

ou

s

s

.

06640
where

vpNL

2 5
4pe2^n&

m^g&
~A6!

is a nonlinear plasma frequency. When the latter is mu
larger than the frequency associated with long time sc
plasma motions, the left-hand side in Eq.~A5! can be ne-
glected. Hence, by substitutinĝEz& from Eq. ~A5! in Eq.
~A2! we readily obtain

dn5
mc2

4pe2

]2

]z2
^g&, ~A7!

which, in the dimensionless unit, is identical to Eq.~14!.
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